“The effects of the proliferation of AI in radiology”
الإصدار الثامن من المجلة العلمية لنشر البحوث
تم نشر الإصدار الثامن من المجلة العمية لنشر البحوث في: 1-09 -2022م. يحتوي الإصدار على بعض الأبحاث في مختلف التخصصات، كما أن الإصدار قد تناول العديد من المشاكل البحثية المهمه التي تشكل أهمية وفائدة كبيرة للمجتمع العلمي والمعرفي. جميع الأبحاث متاحة للتحميل والتعقيب والاستشهاد المرجعي لكافة الباحثين والأكاديميين.
الأبحاث والأوراق العلمية:
Name:Yousif Hammad Alshammari
Radiology technologist
Name: JASEM MOHAMMAD Alonazy
Radiology technologist
Name: Salman Ghassab almutairi
Radiology technician
Name: Abdulaziz Khlef Alanazi
Radiology technologist
Name: BANDAR AYED ALRUHAIMI
Radiology technologist
Name: Abdulmohsen Sulaiman almutib
Radiology technologist
Name: Abdulaziz sayer alotaibi
Radiology technologist
Name: Khalid saad almajed
Radiology Technologist
Name: Faris abdullah alshahrani
Radiology Technologist
Name: Samiyah Moqhim Almutairi
Radiological Technology
“The effects of the proliferation of AI in radiology”
Abstract:
The field of image identification has witnessed tremendous advancements made by artificial intelligence systems, with deep learning in particular. A number of methods, including as vibrational autoencoders and convolutional neural networks, have led to the rapid development of medical image processing and have found various uses. Radiologists’ diagnosis, characterization, and follow-up processes used to revolve around visual evaluations of medical pictures. Artificial intelligence techniques are great in quantitatively analyzing radiographic elements, as opposed to depending on qualitative evaluations. The rationale for this is their capacity to discern complex patterns in visual input. This opinion piece aims to provide a high-level overview of AI techniques, with a focus on those that deal with image related challenges. We highlight the ways these advancements are changing the game and delve into the possible effects on many areas of radiography, particularly in relation to cancer treatment. Lastly, we will examine the obstacles to clinical acceptance and propose some ideas to encourage progress in the field.
Keywords: radiology, technology, medical, artificial intelligence (AI), effects, Visual assessments.